关键词:
图像处理
路面裂缝检测
语义分割
DeepLabv3+
轻量化
检测精度
摘要:
裂缝是路面最主要的病害之一,及时、有效地检测和评估裂缝对路面养护至关重要。为实现路面裂缝图像快速、准确的语义分割,提出一种基于DeepLabv3+模型的路面裂缝检测方法。为减小模型参数量、提高推理速度,采用MobileNetv3作为模型的主干特征提取网络,且在空洞空间金字塔池化模块中使用Ghost卷积代替普通卷积,使模型更加轻量化。为避免替换主干网络降低模型精度:首先,在空洞空间金字塔池化模块中使用条形池化模块代替全局平均池化,有效捕获裂缝结构的上下文信息,避免无关区域噪声的干扰;其次,引入轻量级通道注意力机制efficient channel attention(ECA)模块,增强特征的表达能力,并设计浅层特征融合结构丰富图像的细节信息,优化模型对裂缝的识别效果;最后,构造混合损失函数解决裂缝数据集类别不平衡而导致检测精度较低的问题,利用迁移学习的训练方式提高模型的泛化能力。实验结果表明:所提路面裂缝检测模型参数仅为14.53 MB,比原模型参数量减少93.04%,平均帧率达到47.18,满足实时检测的要求;在精度方面,该模型裂缝检测结果的交并比和F1值分别为57.21%和72.76%,优于经典的DeepLabv3+、PSPNet、U-Net模型和先进的FPBHN、ACNet等模型。所提方法可大幅减小模型参数量,在保证路面裂缝检测精度的同时满足实时性,为基于语义分割的路面裂缝在线检测奠定基础。