关键词:
视频显著目标检测
图像显著目标检测
多任务学习
性能差异
摘要:
显著目标检测(Salient Object Detection,SOD)能够模拟人类的注意力机制,在复杂的场景中快速发现高价值的显著目标,为进一步的视觉理解任务奠定了基础。当前主流的图像显著目标检测方法通常基于DUTS-TR数据集进行训练,而视频显著目标检测方法(Video Salient Object Detection,VSOD)基于DAVIS,DAVSOD以及DUTS-TR数据集进行训练。图像和视频显著目标检测任务既有共性又有特性,因此需要部署独立的模型进行单独训练,这大大增加了运算资源和训练时间的开销。当前研究大多针对单个任务提出独立的解决方案,而缺少统一的图像和视频显著目标检测方法。针对上述问题,提出了一种基于多任务学习的图像和视频显著目标检测方法,旨在构建一种通用的模型框架,通过一次训练同时适配两种任务,并进一步弥合图像和视频显著目标检测方法之间的性能差异。12个数据集上的定性和定量实验结果表明,所提方法不仅能够同时适配两种任务,而且取得了比单任务模型更好的检测结果。