关键词:
机场交通管控与运行
场面移动目标
机场地图数据库
AIMM-UKF
转移概率矩阵
观测矩阵
摘要:
针对机场场面高密度交通以及多类型移动目标的特殊性,为保证机场自动化设备如无人驾驶技术在机场内的应用,需要进一步优化定位算法来提高移动目标的跟踪精度;通过分析现有的自适应交互式多模型-无迹卡尔曼滤波跟踪算法(adaptive interactive multi-model-unscented Kalman filter algorithm,AIMM-UKF)在移动目标跟踪过程中模型匹配度和跟踪精度上的不足,研究了1种基于机场活动地图信息改进的自适应交互式多模型-无迹卡尔曼滤波跟踪算法。根据机场地图数据库(airport map database,AMDB)细化的机场操作规程文件,通过ArcGIS软件对某机场施工CAD图简化处理并利用二次多项式配准法对机场地图进行精确校正,完成高精度机场地图修正,将接收到的机场智能监控设备采集到的数据进行实时处理,结合高精度机场地图信息对发生位置偏移的移动目标的坐标信息进行修正,改变移动目标跟踪算法的观测值,在自适应修正马尔可夫转移概率矩阵的基础上,利用观测矩阵对其进行二次修正,提高移动目标跟踪精度和模型匹配度。经蒙特卡洛仿真实验表明:该改进算法利用高精度机场地图信息对移动目标的观测值进行修正,与自适应修正马尔可夫转移概率矩阵的交互式多模型-无迹卡尔曼滤波算法相比,位置的均方根误差(root mean square error,RMSE)平均降低了62.69%,速度的RMSE平均降低了56.84%。本文算法具有更高的模型匹配度和更佳的滤波效果,提高了场面移动目标的跟踪精度。