关键词:
无人机
航拍图像
小目标检测
高性能特征提取
任务解耦
摘要:
无人机广泛应用于环境监测、资源规划和电力巡检等多种领域,其航拍图像中存在大量小尺寸目标,给目标检测任务带来难度。为此,在YOLOv5s的基础上提出一种基于高性能特征提取和任务解耦的目标检测网络(HFTT-Net)算法。首先,针对航拍图像中小尺寸目标特征提取困难的问题,在原始骨干网络的基础上引入多头自注意力机制,使网络充分关注小目标信息,在多尺度特征融合过程中使用SPD(Space-to-depth)组件,增强待检测目标的特征;接着,对于目标检测中普遍存在的任务冲突的问题,将分类头与回归头进行解耦操作,进一步提升目标检测精度;最后,结合基于EIoU的回归损失对网络进行监督,提升网络收敛速度,实现无人机航拍图像中目标的精确检测。在VisDrone2019数据集上的实验结果表明,HFTT-Net中的高性能特征提取和任务解耦操作能够充分提升网络的小目标检测能力,在航拍图像的多密集小目标场景任务中表现突出,该算法在能够满足实时检测的情况下与经典的YOLOv5s算法相比精度提升了2.5%。