关键词:
高光谱图像
目标检测
知识蒸馏
生成对抗网络
Transformer-GAN
摘要:
高光谱目标检测在地球观测中至关重要,被广泛应用于军事和民用领域。然而,由于高光谱图像的背景复杂性和目标样本的有限性,该任务面临较大的挑战。本文首先采用CEM (约束能量最小化)粗检测方法提取背景数据。随之,引入了一种新的知识蒸馏模型,即KDTGAN (通过Transformer-GAN实现)。教师模型的生成器采用了Transformer编码器的结构,并结合多尺度数据融合的方法,能够准确地学习背景分布,进而通过重构背景信息实现目标检测。为了克服GAN(生成对抗网络)训练不稳定的挑战,特别是纯背景数据的稀缺性,本文提出了一种新的损失算法,以减小可疑目标样本对模型性能的负面影响。为了降低模型的计算负担,本文引入知识蒸馏,并设计新的蒸馏损失对学生模型加以约束,使模型轻量化的同时提高学生模型检测精度。实验结果表明:KDTGAN相较于当前检测方法表现更优,具有更高的检测精度和鲁棒性。