关键词:
水面目标检测
注意力机制
类激活映射
张量分解
摘要:
为解决多场景复杂内河背景下水面目标检测存在环境噪声大、水面目标分布情况繁杂、特征微小模糊等问题,提出一种融合多尺度特征和注意力机制,增强类激活映射的水面目标检测算法,称UltraWS水面目标检测算法。在典型检测网络上设计空间注意力模块与多头策略,融合多尺度特征,提高对微小目标的检测能力。其次,提出UltraLU模块增强类激活映射,减小环境因素与分布因素对检测目标的影响。最后,设计对模型进行Tucker张量分解,实现模型轻量化,增强模型的可解释性与推理速度。实验结果表明,所提出的UltraWS算法提高了对背景噪声的抗干扰能力,更好捕捉微小目标,满足边缘化部署的检测速度和准确率均衡性需求。在WSODD数据集上,算法的mAP值取得了最高的84.5%,相较于其他主流方法存在较大提升。基于提出的算法建立航道安全巡检体系与评估方法,有利于推动内河智慧航运的发展。