关键词:
脑胶质瘤
核磁共振成像
图像处理
计算机辅助
人工智能
摘要:
目的 脑胶质瘤及其子区域的全自动分割是计算机辅助肿瘤临床诊断的基础,卷积神经网络在脑部磁共振成像(magnetic resonance imaging, MRI)分割过程中,小卷积核只能提取局部特征而无法有效融合全局特征,缩小了对影像信息的感知范围,从而导致分割精度不足的问题。本研究旨在利用膨胀卷积,针对三维(three-dimensional, 3D)-UNet不能充分提取全局特征的问题进行改进。方法 (1)算法构建:本文提出一种带有三条全局上下文特征提取通路的3D-UNet模型,即3DGE-UNet模型。使用脑部肿瘤分割挑战赛(Brain Tumor Segmentation Challenge, BraTS)2019提供的公开数据集(335例患者),设计一种全局上下文特征提取(more global contextual feature extraction, GE)模块,并将该模块引入到3DUNet网络的第一、二、三条跳跃连接处,利用该模块充分提取图像的不同尺度全局特征,并与上采样得到的特征图叠加,扩大模型感受野,实现不同尺度特征的深层融合,从而完成端到端的脑肿瘤全自动分割。(2)算法验证:图像数据来源于BraTs2019数据集(335例患者术前MRI图像,包括T1、T1ce、T2和FLAIR四种模态图像和一张医生标注的肿瘤标签图像),将数据集分别按照8∶1∶1划分为训练集、验证集和测试集。以医生标注的肿瘤标签图像为金标准,使用Dice系数(综合评价有效性)、敏感度(病灶区域的查全率)和95%Hausdorff距离(肿瘤边界的分割精度)在测试集中评估算法对完整肿瘤区域(whole tumor, WT)、核心肿瘤区域(tumor core, TC)和增强肿瘤区域(enhancing tumor, ET)三种区域的分割性能,分别使用无GE模块的3D-UNet模型和有GE模块的3DGE-UNet模型进行检测,内部验证GE模块设置的有效性。使用3DGEUNet模型、ResUNet、UNet++、nnUNet、UNETR检测上述性能指标,并比较5种算法模型的收敛性,外部验证3DGEUNet模型的有效性。结果 (1)在内部验证中,改进的3DGE-UNet模型在测试集中分割WT、TC和ET区域的Dice均值分别为91.47%、87.14%和83.35%,与传统的3D-UNet模型相比(89.79%、85.13%和80.90%),综合评价达到了最优值,对于三个区域的分割精度都有提升(P<0.05)。3DGE-UNet模型与3D-UNet模型相比,ET区(86.46%vs. 80.77%)具有更高的敏感度(P<0.05),在查全率方面表现更为优越,在面对病灶区域时,3DGE-UNet模型更倾向于正确识别并捕获更全面的阳性区域,更为有效地避免漏诊发生。3DGE-UNet模型在肿瘤WT区域边缘分割的出色性能,其95%Hausdorff距离均值优于3DUNet模型(8.17 mm vs. 13.61 mm,P<0.05),但在TC区(8.73 mm vs. 7.47 mm)和ET区(6.21 mm vs. 5.45 mm)的性能表现与3DUNet模型相似。(2)在外部验证中,其余4种算法仅TC的Dice均值(87.25%)、WT的敏感度均值(94.59%)、TC的敏感度均值(86.98%)和ET的平均95%Hausdorff距离(5.37 mm)优于3DGE-UNet模型,但差异无统计学意义。3DGE-UNet模型可以在训练阶段快速收敛,速度优于其他外部模型。结论 3DGE-UNet模型可以有效地提取和融合不同尺度的特征信息,提高脑肿瘤分割的准确性。