关键词:
目标检测
无人机
双目视觉
深度学习
入侵检测
摘要:
针对现有的基于深度学习的目标检测方法在面对现实场景的无人机目标时,存在鲁棒性差、准确率低、模型复杂度高的问题,提出一种基于动态卷积的YOLO目标检测方法——OD-YOLO。该算法针对无人机目标低、慢、小的特点,采取了以下改进措施:首先针对下采样过程可能导致学习信息丢失和目标信息不突出的问题,提出空间到深度卷积来实现下采样过程,不丢失学习信息的同时突出无人机目标的特征;其次为了进一步提高目标检测的精度和对不同背景的泛化性,采用全维度动态卷积进一步提高目标检测的精度和对不同背景的泛化性;最后对模型骨干网络进行改进,增强无人机目标的语义特征,并缩减骨架大小,减少参数量,既提高模型的计算效率,又保持对无人机目标的有效表示能力。通过实验仿真,对比了OD-YOLO和当前先进的目标检测算法。结果表明,OD-YOLO在精度和轻量化方面都有显著提升。mAP和Recall分别相比原模型提高了3.4%和5.1%。