关键词:
焊接件表面缺陷
目标检测
YOLOv7-tiny
RFB
ThinNeck
K-means++
摘要:
针对目前市面主流焊接件表面缺陷的模型检测精度不高,模型复杂和不满足实时监测等问题,提出了一种基于YOLOV7-tiny改进得到的焊接件表面缺陷新型检测模型KThin-YOLOV7。首先,设计了基于模拟人类视觉感受野的EMA-BasicRFBC模块,更换YOLOV7-tiny模型的空间特征金字塔SPP模块,从而加强模型特征表达的性能。其次,以SlimNeck设计范式结构为基础设计了ThinNeck结构,并用其更换YOLOV7-tiny的NECK特征融合部分,减少模型的参数量和计算量的同时提高了模型的平均检测精度。最后,引入K-means++算法找出合适的锚框,并用FEIOU损失函数更换原模型的LOSS,进一步帮助模型优化目标框的位置和大小。KThin-YOLOV7相对原始YOLOV7-tiny模型的mAP提升了7.11%,达到87.64%,同时模型的参数量和计算量分别下降了11.14%和15.26%。实验结果表明,KThin-YOLOV7能够高效且准确地定位检测焊接件表面的缺陷。