关键词:
多特征融合
边缘特征
纹理特征
卡尔曼滤波
目标跟踪
摘要:
针对CAMShift算法在实际应用场景中受颜色和遮挡时跟踪失败的问题,提出一种多特征融合与Kalman滤波的CAMShift目标跟踪算法。多特征融合是在CAMShift算法基础上将边缘、纹理与颜色特征融合在一起,采用改进的Canny算子描述边缘特征,采用统一模式下的N-LBP构造纹理特征,并利用巴氏(Bhattacharyya)系数计算各个特征的自适应融合权值,通过不同特征之间的优势互补,增强特征的表达能力。当跟踪目标无遮挡时,使用CAMShift算法计算目标位置并更新Kalman滤波器参数,有遮挡时,使用Kalman滤波预测当前目标的位置,最后仿真实验表明,本文算法受环境影响小,相比CAMShift算法跟踪误差显著降低。