关键词:
遥感图像
小目标检测
特征协同
细粒度感知
摘要:
针对遥感图像中小目标多、排列密集导致的漏检问题,提出一种特征协同与细粒度感知的遥感图像小目标检测算法。首先,构造精细特征协同策略,通过智能调整卷积核参数,优化了特征间的交互和整合过程;通过精确控制信息流,实现从粗糙到精细的渐进式特征精化。在此基础上,本文设计一个细粒度感知模块,将感知注意力与移动反向卷积结合形成一个增强型检测头,显著增强网络对于极小尺寸物体的感知能力。最后,为了提升模型训练的效率,采用MPDIoU和NWD作为回归损失函数,解决位置偏差,加快模型收敛。在DOTA1.0数据集和DOTA1.5数据集上的实验结果表明,改进后算法相比于基准方法,平均精度分别提高7.4%和6.1%,相较于其他算法具有明显优势,显著改善遥感图像中小目标的漏检情况。