关键词:
输电线路
绝缘子
深度学习
目标检测
摘要:
输电线路绝缘子故障影响电力系统供电可靠性,为了实现航拍图像中绝缘子的准确检测,本研究提出了一种基于改进Faster-RCNN网络的输电线路航拍绝缘子目标检测方法(ScSGB-RCNN),主要工作有:1)针对检测算法精度低的问题,采用自校准卷积结构(Self-calibrated convolutional Network,ScNet)和ConvNeXt网络构建了ScConvNeXt主干网络,通过融合多个卷积注意力模块,扩大网络的全局感受野,提升检测精度。2)为优化不同尺度绝缘子目标的特征提取能力,提出一种轻量化的特征金字塔结构SFPN,融入到ScConvNeXt网络中,降低计算参数量。3)为提高模型收敛速度和检测精度,采用GeLU激活函数改进FRN(Filter Response Normalization,FRN)归一化函数,提升网络的非线性输出能力。4)设计了BIoU并重新构建定位损失函数。实验结果表明,本研究提出的方法较原算法精度提高22.4%,模型收敛速度提升4倍,FPS提高8.7帧/秒,优于Faster-RCNN、SSD、YOLOv3、YOLOv5、YOLOv7等算法。该方法可为输电线路航拍绝缘子检测提供技术参考。