关键词:
广播式自动相关监视
交互式多模型卡尔曼滤波
目标跟踪
协同转弯
状态估计
摘要:
目标跟踪是机载广播式自动相关监视(ADS-B)应用的基础功能,对提升航空器周边的弱机动民航飞机目标跟踪性能具有重要意义。提出一种基于交互式多模型卡尔曼滤波(IMMKF)算法的ADS-B监视应用目标跟踪方法。首先,针对弱机动背景下的民航飞机的飞行特点,建立包含匀速模型和标准协同转弯模型的运动模型集,并对模型进行线性化近似;然后,将模型预测和ADS-B状态矢量量测数据作为IMMKF算法中多个并行卡尔曼滤波器的输入,进行并行滤波;最后,计算得到目标状态矢量的估计和模型近似概率,并作为下一次迭代的输入。结果表明:相比于基于匀速模型的卡尔曼滤波目标跟踪方法,IMMKF算法的位置跟踪误差降低了59%,速度跟踪误差降低了77%,显著提升了状态估计性能,具备较高的跟踪精度、稳健性与计算效率,在ADS-B监视应用中具有实际应用价值与借鉴意义。