关键词:
计算机视觉
EfficientNet
指针式水表
读数识别
CA注意力机制
摘要:
指针式机械水表主要依靠人工进行抄表和识别,存在耗时长、人工成本高、识别错误率高等缺点。近年来随着深度学习技术的发展,研究人员将其应用于水表读数识别方面。设计一套基于深度神经网络的指针式机械水表读数识别算法(PWMR-DL),可准确地识别指针式机械水表的读数,并构建指针式机械水表数据集用于算法训练和测试。针对子表盘的检测和矫正,引入MaskRCNN模型实现表盘定位与分割,并设计了高效的矫正策略对各个子表盘进行旋转校正,以提升指针式机械水表图像在不同旋转角度下识别的鲁棒性,减少误差。在子表盘读数识别阶段,引入CA注意力机制改进EfficientNet模型,以提升读数识别的准确率,并通过增加分类维度到20类,细化了指针位置处于数字间隙时的判断精度。同时,结合子表盘读数序列相关性校正逻辑设计读数生成方法,有效减少了读数错误。实验结果表明,PWMR-DL算法在子表盘读数识别方面,与改进前的EfficientNet模型相比精度提升了约2.4%,而且经过优化的模型仅增加了少量参数,维持了其轻量级的特性。在低分辨率图像下,PWMR-DL算法的整体识别精度可达到96.8%。