关键词:
目标检测
YOLOv8n
CARAFE
注意力机制
摘要:
受水体衰减、散射等因素的影响,水下光学图像存在严重的偏色、模糊等问题,严重降质导致目标分辨率较差,进而不利于开展水下目标检测任务。针对以上问题,为了提高水下目标检测的精度,减少误检和漏检的发生率,提出了一种基于改进YOLOv8n的水下目标检测算法:ESA-YOLOv8。首先该算法在C2f中引入了ESP模块改进Bottleneck结构,ESP模块可以优化网络效率,降低YOLOv8n模型的参数量和计算量;其次,增加一个小目标检测层以提高对水下小目标的检测能力;最后,将轻量级上采样算子CARAFE与注意力机制ECA相继引入颈部网络,提高目标检测精度,实现上采样特征融合的增强。实验结果表明,在水下生物数据集DUO上,本文设计的ESA-YOLOv8算法在模型参数量降低的情况下,mAP@0.5和mAP@0.5:0.95分别高达84.7%和65.5%,较基础模型YOLOv8n分别提升了1.7%和1.8%。高精度的检测结果和模型参数量的降低证明了改进YOLOv8n的有效性和在水下目标检测的应用潜力。