关键词:
猪只行为识别
YOLO v8
特征提取网络
CARAFE
WIoUv3
目标检测
摘要:
随着现代生猪养殖业快速发展,对猪只行为精准识别需求日益增长。针对猪只行为多样性、特征相似性、相互遮挡和堆积等问题,提出一种基于改进YOLO v8模型的猪只行为识别方法。首先,引入ConvNeXt V2作为主干特征提取网络,以增强对检测目标的语义信息提取能力。其次,在特征融合网络中添加加权双向特征金字塔网络(BiFPN),强化模型特征融合能力。此外,结合上采样算子CARAFE,进一步提升模型在行为识别过程中特征提取能力。最后,使用WIoUv3作为损失函数,优化模型检测精度。经实验验证,改进后模型准确率、召回率、平均精度均值和F1值分别达到89.6%、88.0%、91.9%和88.8%,与TOOD、YOLO v7和YOLO v8模型相比,平均精度均值分别提高10.9、6.3、3.7个百分点,显著提高猪只行为识别精度。消融实验表明,各项改进均对模型的识别性能有提升效果,ConvNeXt V2主干特征提取网络对模型的提升效果最明显。综上所述,CBCW-YOLO v8模型在猪只行为识别任务中展现出优良的综合性能,为猪只健康管理和疾病预警提供有力的技术支持。