关键词:
鲸鱼优化算法
变分模态分解
粒子群算法
支持向量机
轴承故障诊断
摘要:
滚动轴承工作环境恶劣且振动信号容易受到噪声干扰,使得轴承故障不易被识别。针对此问题,提出了鲸鱼优化算法变分模态分解(whale optimization algorithm variational mode decomposition,WOA-VMD)和粒子群算法优化支持向量机(particle swarm optimization support vector machine,PSO-SVM)的滚动轴承故障诊断方法,首先,采用WOA-VMD寻找分解层数和惩罚因子最优参数组合;其次,将轴承正常信号以及故障信号作为输入进行变分模态分解(variational mode decomposition,VMD),得到若干个本征模态函数(intrinsic mode function,IMF),计算各模态分量的样本熵值作为特征向量;再次,将特征向量分成训练集和测试集;最后,将分组的特征向量分别输入到支持向量机(support vector machine,SVM)模型与PSO-SVM模型中进行训练与故障诊断。结果表明,SVM模型故障诊断率分别为89.1667%和86.2500%,PSO-SVM模型故障诊断率分别为100%和99.5833%,轴承故障得到了有效识别。