关键词:
多传感器信息融合
皮带输送机
故障诊断
早期诊断
摘要:
为精确、快速地对煤矿用皮带输送机故障进行早期诊断,从传感器选择与布置、数据处理与融合两个方面构建了基于多传感器融合的皮带输送机故障早期诊断体系,提出了振动、温度、张力和声音4种关键监测指标。采用卡尔曼滤波法建立了数据融合的数学模型,通过实验获得了皮带输送机在不同工况下振动频率、温度变化和张力分布3种变化规律。实验结果表明,该诊断系统能够实时监测皮带输送机的运行状态,准确诊断出包括轴承磨损、电机过载和皮带松弛在内的多种故障类型,并在故障发生前平均提前24 h发出预警,显著提高了故障预警的准确性和可靠性;实验数据显示,预处理阶段未对基础数据进行显著修正,初态数据优良,T1时刻振幅感应器的原始读数2.3 mm/s经过抑噪后精简至2.2 mm/s,展示了抑噪技术在去除随机波动方面的有效性。进一步应用卡尔曼滤波后,T1时刻的数据从2.2 mm/s优化至2.18 mm/s,证明了该技术在综合不同传感信息和提高数据准确性方面的关键作用。