关键词:
行星齿轮箱
频率切片小波变换
注意力机制
ConvNeXt模型
故障诊断
摘要:
针对传统手工提取故障特征过度依赖专家的先验知识,导致信息提取不完全、效率低、成本高、漏诊误诊的问题,提出一种基于频率切片小波变换(Frequency Slice Wavelet Transform,FSWT)和注意力增强ConvNeXt模型的新方法,用于行星齿轮箱故障诊断。该方法在ConvNeXt模型基础上融合卷积注意力模块(Convolutional Block Attention Module,CBAM),使网络更加聚焦于关键区域的特征,减小无关目标的干扰。通过FSWT将一维振动信号转化为具有二维特征的时频谱图像,输入到改进后的网络中进行自动特征提取,并建立特征空间与故障空间之间的映射关系,实现不同故障模式的准确区分。利用动力传动模拟实验台数据对所提方法进行实验验证,结果表明:相较于其他网络模型,改进后的ConvNeXt模型能够准确识别出齿轮特定类型的故障,且噪声干扰下依旧展现出良好的鲁棒性。所得研究成果可为行星齿轮箱智能故障诊断提供参考。