关键词:
柴油机
多源信息融合
t分布–随机邻近嵌入
故障诊断
摘要:
针对基于单一振动信号难以区分柴油机不同部件故障,提出一种基于t分布–随机邻近嵌入(t-distributed stochastic neighbor embedding,t-SNE)多源信息融合的故障诊断方法。首先,通过试验对柴油机故障仿真模型进行标定,基于仿真模型获取不同故障状态下的热工参数与缸盖振动,选取相关性低的热工参数,提取振动信号的时域和频域特征参数,并利用t-SNE将振动特征参数与热工参数进行融合降维,基于支持向量机(support vector machine,SVM)方法对降维后的数据进行分类识别,构建柴油机故障诊断模型,最终取得了95.7%的故障识别准确率。与基于振动单一信号的故障诊断方法相比,多源信息融合能有效区分不同故障类别,提高柴油机故障识别准确率。