关键词:
滚动轴承
故障诊断
集成经验模态分解
卷积神经网络
双向长短时记忆神经网络
摘要:
针对滚动轴承在噪声环境中发生故障时,传统深度神经网络容易出现特征提取不充分,过拟合,泛化能力不足的问题,提出一种集成经验模态分解(EEMD)与卷积神经网络-双向长短时记忆网络(CNN-BiLSTM)的故障诊断方法。在信号预处理阶段使用EEMD将噪声环境下的振动信号分解为一系列固有模态函数,降低噪声的影响;在CNN部分的第1层使用大卷积核与多分支结构获得不同的感受野,在每一个分支中随机丢弃一些数据增强模型的抗干扰能力,从而提取到更具泛化能力的多样化特征信息,后续部分使用残差结构,以免网络较深时发生梯度消失的现象,解决深层次网络退化问题;在BiLSTM部分使用2个并行的分支结构,用于增强模型对时序信息的利用,从而提高模型在不同工况和噪声环境下的准确率。使用凯斯西储大学轴承数据集和西安交通大学轴承数据集对所提方法进行验证,并与其他深度学习方法和传统机器学习方法进行对比,结果表明本文方法在多种工况和噪声环境下均取得了优异的故障诊断性能。