关键词:
轨道电路
补偿电容
动态检测
小波包分解
卷积神经网络
故障诊断
摘要:
为进一步挖掘动态检测数据中蕴含的补偿电容状态特征,针对ZPW-2000A型轨道电路,结合小波包分解与卷积神经网络,提出一种基于WPD-CNN的补偿电容故障诊断方法。采用功率谱分析的方法,找出检测曲线中趋势项特征与补偿电容特征所在频带范围,然后利用小波包分解方法对原始信号进行分解,提取其中特征频带内的小波包系数构造补偿电容特征矩阵。使用动态检测数据构造训练集与测试集,将不同故障类型的特征矩阵输入卷积神经网络进行训练学习,并在测试集上进行验证。实验结果表明,WPD-CNN方法对单个信号的特征提取用时5.9 ms,总体故障识别准确率为98.4%,可有效识别不同位置的补偿电容故障问题,为补偿电容故障诊断提供依据。