关键词:
单相接地故障
特征融合
GA-SVM
暂态零序电流
小样本数据
摘要:
针对配电网单相接地故障数据量较少时,选线方法精度不高,提出一种基于特征融合的遗传算法优化支持向量机(genetic algorithm-support vector machine,GA-SVM)配电网单相接地故障选线方法,采用傅里叶变换、有功功率法以及小波包变换对不同故障工况下每一条线路的暂态零序电流进行分解,提取基波幅值、五次谐波幅值、平均有功功率分量及小波能量值四种特征,经主成分分析法对这四种特征进行融合,提取主成分分量,建立特征数据库,将特征数据库的80%作为训练集,20%作为测试集,通过GA-SVM对特征数据库中的样本进行训练,实现故障选线。通过MATLAB/Simulink搭建包含5条馈线的配电网仿真模型进行验证,结果表明,提出的算法可以通过小样本数据实现故障选线,选线精度较高,适用性强。