关键词:
电动机
声信号
故障诊断
域自适应
多任务学习
摘要:
由于高质量的电机故障数据样本的采集和处理成本过高,新采集的数据样本存在无标注的情况,而域自适应可以借助现有数据对无标注的新数据进行处理识别,因而在故障诊断领域受到了广泛关注。在基于域自适应的电机故障诊断领域,存在两个问题:常用域自适应框架下会出现多任务梯度冲突。同时,现有方法极少研究复杂运行状态之间的迁移任务。因此本文提出了AMDA电机故障诊断方法以解决上述问题。AMDA方法利用多层一维卷积层、批量归一化层和池化层构成的特征提取器,提取源域和目标域的高阶特征;之后结合使用基于对抗的方法和基于分布差异度量的方法,减小源域和目标域数据特征的分布差异;最后引入基于梯度对齐的多任务学习方法,对故障分类器、域判别器和分布差异度量三个任务进行平衡和优化,减小多任务梯度之间的冲突,最终得到基于多任务学习的电机声信号的域自适应故障诊断模型。使用所提出的AMDA方法在多个试验设置下进行跨运行状态故障诊断试验,试验结果表明,AMDA方法在基于声信号的跨运行状态电机故障诊断试验中,完成了稳定运行状态(Stable)、启动运行状态(Start)和循环运行状态(NEDC)之间的迁移任务,最高诊断正确率可达91.47%。同时,AMDA方法在两个对比试验中,性能均显著高于其他方法,具有一定的研究价值和工程应用价值。