关键词:
故障诊断
迁移学习
滚动轴承
图卷积神经网络
无监督领域自适应
摘要:
针对轴承跨域故障诊断任务中因转速跨度大而导致故障特征差异显著,难以有效建模和对齐复杂数据特征的问题,提出一种基于领域对抗图注意力网络(DA-GAT)的模型以提高故障诊断准确率。首先将轴承振动信号数据经基于GC模块的特征提取网络处理,然后将提取到的数据特征输入自适应边缘生成模块并构建实例图,再通过图注意力网络进行多尺度卷积建模;采用分类器和域鉴别器分别对信号特征的类别信息和领域信息进行建模,利用最大均值差异(MMD)度量不同域实例图的数据结构差异,并最大化源域和目标域之间的特征一致性实现源域和目标域的对齐。宽转速跨度诊断实验的结果表明,DA-GAT的诊断准确率显著优于JAN、MKMMD、CORAL和DANN等方法,其平均准确率达到76.8%,排除低转速故障特征不明显的工况,准确率达94.4%以上。DA-GAT模型能够充分提取数据结构信息,更有效地捕捉和对齐源域和目标域的特征差异,提高了轴承跨域故障诊断的准确性和鲁棒性。