关键词:
自适应噪声完备集合经验模态分解
支持向量机
麻雀搜索算法
Sin混沌映射
自适应惯性权重
摘要:
风电机组轴承运行工况复杂多变,高效轴承故障诊断方法对确保风电机组安全稳定运行具有重要意义。文中针对风电机组轴承在强噪声背景下故障特征提取困难的问题,提出一种基于自适应噪声完备集合经验模态分解(CEEMDAN)和改进麻雀搜索算法(ISSA)优化支持向量机(SVM)相结合的风电机组轴承故障诊断方法。首先,利用CEEMDAN对轴承振动信息进行降噪和分解,得到多个本征模函数(IMF)分量,根据相关系数和峭度准则,筛选有效IMF分量进行信号重构并特征提取;其次,通过引入Sin混沌映射、自适应惯性权重及莱维(Levy)飞行策略对麻雀搜索算法(SSA)进行改进;最后,采用ISSA-SVM模型进行风电机组轴承故障的识别和诊断。研究结果表明:实际工程风电机组轴承故障识别准确率为95.8%,验证了所提方法的有效性和鲁棒性。