关键词:
轴承故障诊断
柔性残差神经网络
动态减法平均优化器
平行注意力模块
噪声干扰
摘要:
滚动轴承作为旋转机械的重要组成部分,其正常运行直接影响机器的使用寿命和运行状态.为了提高滚动轴承故障诊断的准确性,本文提出一种基于动态减法平均优化器(DSABO)和平行注意力模块(PAM)的柔性残差神经网络(FResNet),用于滚动轴承故障诊断.具体而言,首先设计一种基于卷积神经网络的柔性残差模块来构建FResNet.该模块允许在DSABO迭代时更改卷积层数、卷积核数和跳跃连接数,从而增强网络故障特征提取能力并减少网络退化.其次,设计具有卷积层的PAM来融合通道注意力和空间注意力输出权重,通过与滚动轴承运行数据结合,实现数据特征增强.于是,DSABO、PAM和FResNet的集成形成了一个有效的滚动轴承故障诊断模型,命名为DSABO-PAM-FResNet.最后,利用美国凯斯西储大学滚动轴承故障数据集验证所提DSABO-PAM-FResNet模型的可行性和有效性.结果显示,在信噪比为–6 dB环境下所提模型对滚动轴承故障诊断的准确率为97.18%,证明所提模型具有较好的抗噪能力;在0.75 kW、1.5 kW和2.25 kW不同负载条件下,所提模型对滚动轴承故障诊断的平均准确率为98.2%,证明所提模型具有良好的变工况诊断适应能力.与其他智能故障诊断方法的对比结果表明,所提DSABO-PAM-FResNet模型的诊断精度更高,为滚动轴承故障诊断提供了一种新的有效智能方法.