关键词:
故障检测
TrellisNet
长短期记忆网络
卷积神经网络
注意力机制
图像识别
摘要:
电力设备故障检测模型的性能受到多种因素的影响,如故障种类的多样性、故障特征的复杂性和图像质量的差异等.为此,本文提出一种基于TrellisNet和注意力机制的新型电力设备故障检测模型.首先,将长短期记忆(Long Short-Term Memory,LSTM)网络和卷积神经网络(Convolutional Neural Network,CNN)进行融合,构建LSTM-CNN来获取图片中的故障特征,以有效区分不同故障类型的特征,并减少噪声和干扰因素的影响.然后,将LSTM-CNN获得的特征数据作为输入,并将注意力机制嵌入到TrellisNet中,构建具有高分辨能力的AT-TrellisNet网络来检测不同电力设备的故障类型.最后,选取5种常见的电力设备故障进行模型验证.实验结果显示,本文模型与一些现有的检测模型相比,检测精确率较高,最高可达90%以上,可满足实际电力设备故障检测需求.