关键词:
滚动轴承
早期故障特征
变分模态分解
最大相关峭度解卷积
参数自适应
周期性冲击信号
摘要:
针对强噪声背景下滚动轴承早期故障冲击信号微弱,故障特征难以提取的问题,提出了一种基于参数自适应变分模态分解(VMD)与最大相关峭度解卷积(MCKD)的滚动轴承故障诊断方法(微弱故障信号降噪及冲击特征增强方法)。首先,采用时频域差值信息引导VMD,并引入相似系数差值和能量差值比作为迭代收敛条件,重新设定了适用于信号分解的终止准则;然后,采用改进的减法平均优化算法,对MCKD中的解卷周期T、移位数M和滤波器长度L进行了优化,确保了参数组合的最佳性;借助MCKD方法的冲击特征提取能力,精确获取了目标周期性冲击信号;最后,依托内蒙古科技大学机械工程学院配备的HZXT-DS-003型双跨转子滚动轴承试验台,构建了故障轴承数据集,对基于VMD-MCKD的滚动轴承故障诊断方法的有效性进行了验证。研究结果表明:采用该方法能有效抑制噪声,显著增强信号的周期冲击特性、故障特征频率及其倍频,从而完成了对滚动轴承早期微弱故障的准确诊断;与其他方法相比,该方法在频谱中更为突出地展现故障特征频率及其倍频峰值,且信噪比提升了78%;此外,即使在不同信噪比的噪声环境下,该方法仍能保持卓越的信号处理能力。