关键词:
自动引导车驱动电机
故障预测与健康管理
卷积神经网络
自回归模型
对称点图案
摘要:
【目的】为评估自动引导车(AGV)驱动电机的健康状态、预测故障概率,改进AGV的保养维护和工作策略,本文结合AGV驱动电机的历史状态数据和预定义的工作负荷,提出了一种AGV驱动电机的故障预测与健康管理(PHM)模型。【方法】首先,采集AGV驱动电机的负载电流、振动信号以及温度数据,并对采集的数据进行去噪和归一化处理,以提高模型的收敛速度和泛化能力。然后,采用自回归模型和卷积神经网络模型对AGV驱动电机的负载电流、振动信号及温度数据的变化趋势进行预测,并将采集的数据和预测的数据转化为对称点图案(SDP)。最后,基于YOLOv11网络对生成的SDP进行分类,从而确定AGV驱动电机的健康等级。根据电机温升将健康等级分为不健康、亚健康和健康三类,基于电机的负载电流、振动信号采用本文所提模型检测驱动电机健康状态并估计驱动电机属于某类健康等级的概率,基于健康状态的测定可以得到AGV驱动电机的故障概率。【结果】对本文模型在验证集和测试集上进行验证测试以评估模型性能。结果表明AGV驱动电机的3类健康状态的平均诊断准确率为99.7%,其中健康和不健康两类的诊断准确率达到了100%。为进一步验证本文模型的优越性,与其他两种模型进行对比,结果表明本文模型的诊断准确度高于其他模型,具有较高的可信度。【结论】本文提出的PHM模型对故障概率预测和健康状态评估的准确度较高,将AGV工作负荷信息整合到PHM模型中,可为AGV的工作任务制定和保养维护提供数据参考。