关键词:
脉冲耦合神经网络
微粒群算法
熵
图像分割
摘要:
脉冲耦合神经网络(Pulse Couled Neural Network,PCNN)在图像处理中得到了十分广泛的应用,但是其多个参数的设置给实际应用造成很大的困难。尤其是在图像分割中,不同类型的图像要求不同的分割参数,不同的参数对图像分割的结果影响很大。而微粒群优化算法(Particle Swarm Optimization,PSO)具有对参数自动寻优的优势,为此,将PSO和PC-NN相结合,以改进的最大熵函数为适应度函数,提出了一种基于PSO和PCNN算法的图像自动分割算法。实验仿真结果验证了该方法的有效性,即不仅可以正确地实现图像分割,而且参数可以自动设置,省去了人工实验的麻烦,同时分割速度也有所提高。