摘要:
We propose a new linear-size data structure which provides a fast access to all palindromic substrings of a string or a set of strings. This structure inherits some ideas from the construction of both the suffix trie and suffix tree. Using this structure, we present simple and efficient solutions for a number of problems involving palindromes. (C) 2017 Elsevier Ltd. All rights reserved.
摘要:
Background: The increasing application of next generation sequencing technologies has led to the availability of thousands of reference genomes, often providing multiple genomes for the same or closely related species. The current approach to represent a species or a population with a single reference sequence and a set of variations cannot represent their full diversity and introduces bias towards the chosen reference. There is a need for the representation of multiple sequences in a composite way that is compatible with existing data sources for annotation and suitable for established sequence analysis methods. At the same time, this representation needs to be easily accessible and extendable to account for the constant change of available genomes. Results: We introduce seq-seq-pan, a framework that provides methods for adding or removing new genomes from a set of aligned genomes and uses these to construct a whole genome alignment. Throughout the sequential workflow the alignment is optimized for generating a representative linear presentation of the aligned set of genomes, that enables its usage for annotation and in downstream analyses. Conclusions: By providing dynamic updates and optimized processing, our approach enables the usage of whole genome alignment in the field of pan-genomics. In addition, the sequential workflow can be used as a fast alternative to existing whole genome aligners for aligning closely related genomes. seq-seq-pan is freely available at https://***/rki_bioinformatics
摘要:
By introducing the methods of machine learning into the density functional theory, we made a detour for the construction of the most probable density function, which can be estimated by learning relevant features from the system of interest. Using the properties of universal functional, the vital core of density functional theory, the most probable cluster numbers and the corresponding cluster boundaries in a studying system can be simultaneously and automatically determined and the plausibility is erected on the Hohenberg-Kohn theorems. For the method validation and pragmatic applications, interdisciplinary problems from physical to biological systems were enumerated. The amalgamation of uncharged atomic clusters validated the unsupervised searching process of the cluster numbers and the corresponding cluster boundaries were exhibited likewise. High accurate clustering results of the Fisher's iris dataset showed the feasibility and the flexibility of the proposed scheme. Brain tumor detections from low-dimensional magnetic resonance imaging datasets and segmentations of high-dimensional neural network imageries in the Brainbow system were also used to inspect the method practicality. The experimental results exhibit the successful connection between the physical theory and the machine learning methods and will benefit the clinical diagnoses.