关键词:
感染时滞
病毒传播
稳定性
Hopf分岔
抑制策略
摘要:
为了有效抑制操作系统病毒在网络中的传播,针对操作系统病毒的目标性强和感染时滞等特点,提出了操作系统病毒的时滞传播模型及抑制策略。在经典SIRS模型基础上,考虑操作系统切换和感染阶段时耗因素,引入新的节点状态和感染时滞,构建了操作系统病毒的时滞模型,并给出了系统的平衡点和基本再生数;运用Lyapunov直接法,证明了网络系统在无病毒平衡点处的全局稳定性;根据Hopf分岔理论,计算了网络存在有病毒平衡点时出现分叉的阈值,分析了有病毒平衡点处的Hopf分岔行为;针对感染时滞过高时的振荡现象,设计了相应病毒传播抑制策略,通过微调操作系统切换频率消除振荡现象,在感染节点数稳定后,参照基本再生数重新调整操作系统切换频率,从而彻底消除病毒。理论和仿真结果表明:当基本再生数小于1时,网络能在无病毒平衡点处全局渐进稳定,此时网络可依赖自身免疫能力消除操作系统病毒;当基本再生数大于1且时滞大于对应阈值时,感染节点数存在周期性振荡,此时网络环境难以判定,通过微调操作系统切换频率可消除振荡;当基本再生数大于1且时滞小于对应阈值时,网络在有病毒平衡点处局部渐进稳定,此时网络安全态势明确,可根据基本再生数调整操作切换频率,彻底消除操作系统病毒。