关键词:
遥操作系统
示教学习
高斯混合模型
力反馈
意图识别
摘要:
针对传统的机器人遥操作系统缺乏对任务的认知和操作者主观性判断的问题,课题组提出了一种基于示教学习与视线追踪的遥操作系统设计策略。首先运用高斯混合模型(Gaussian mixture model,GMM)和高斯混合回归(Gaussian mixture regression,GMR)对机器人的技能进行学习,实现人机技能转移;然后基于示教学习设计了一种人工势场法的虚拟夹具(virtual fixtures,VF),并设计了力反馈算法;最后使用网络摄像头对操作者的视觉意图进行判别,将意图识别结果和人工势场法应用于虚拟夹具力反馈算法中,并进行实验。研究结果表明:基于视觉意图判别的虚拟夹具力反馈遥操作系统能够对操作者的意图进行判别,有效解决了操作者的主观意图受传统虚拟夹具产生的反馈力限制的问题,增强了操作者在遥操作过程中的主观性,是遥操作控制系统中一种有效且实用的力反馈控制方案。研究结果可为高危场景下具有力觉临场感的机器人遥操作系统的实际应用提供参考。