关键词:
异常检测
数据库系统
用户行为
密度聚类
集成学习
摘要:
目前,针对数据库系统内部攻击与威胁的检测方法较少,且已有的数据库异常检测方案存在代价开销高、检测准确率低等问题.为此,将密度聚类和集成学习融合,提出一种基于密度聚类和集成学习的数据库异常检测方法.利用OPTICS(Ordering Points To Identify the Clustering Structure)密度聚类算法对用户产生的数据库SQL操作日志进行聚类,通过对SQL语句中的各属性进行分析,提取用户的异常行为,形成先验知识;将Bagging、Boosting和Stacking进行组合,形成集成学习模型,以OPTICS聚类形成的先验知识为基础,并利用该集成学习模型对用户行为作进一步分析,并创建用户行为特征库.基于用户形成特征库,对用户行为进行检测.给出了方案的详细构建过程,包括数据预处理、训练、学习模型建立以及异常检测;利用相关实验数据进行测试,结果表明本方案能以较高的效率检测出数据库异常行为,并且在准确率方面优于同类方案.