摘要:
The incidence of computer network intrusions has significantly increased over the last decade, partially attributed to a thriving underground cyber-crime economy and the widespread availability of advanced tools for launching such attacks. To counter these attacks, researchers in both academia and industry have turned to machine learning (ML) techniques to develop Intrusion Detection Systems (IDSes) for computer networks. However, many of the datasets use to train ML classifiers for detecting intrusions are not balanced, with some classes having fewer samples than others. This can result in ML classifiers producing suboptimal results. In this dissertation, we address this issue and present better ML based solutions for intrusion detection. Our contributions in this direction can be summarized as follows: Balancing Data Using Synthetic Data to detect intrusions in Computer Networks: In the past, researchers addressed the issue of imbalanced data in datasets by using over-sampling and under-sampling techniques. In this study, we go beyond such traditional methods and utilize a synthetic data generation method called Con- ditional Generative Adversarial Network (CTGAN) to balance the datasets and in- vestigate its impact on the performance of widely used ML classifiers. To the best of our knowledge, no one else has used CTGAN to generate synthetic samples for balancing intrusion detection datasets. We use two widely used publicly available datasets and conduct extensive experiments and show that ML classifiers trained on these datasets balanced with synthetic samples generated by CTGAN have higher prediction accuracy and Matthew Correlation Coefficient (MCC) scores than those trained on imbalanced datasets by 8% and 13%, respectively. Deep Learning approach for intrusion detection using focal loss function: To overcome the data imbalance problem for intrusion detection, we leverage the specialized loss function, called focal loss, that automatically down-weighs easy ex