关键词:
Implantable integrated circuit
area-efficient
low-power
compressive sensing
neural signals
learning-based digital signal processing
signal recovery
medical monitoring
adaptive compression. Far-end crosstalk
Decision-Feedback Equalizer
Inter-Symbol Interference
source-synchronous architecture
Continuous Time Linear Equalizer
摘要:
This multidisciplinary research project aims to investigate the optimized information extrac- tion from signals or data volumes and to develop tailored hardware implementations that trade-off the complexity of data acquisition with that of data processing, conceptually allowing radically new device designs. The mathematical results in classical Compressive Sampling (CS) support the paradigm of Analog-to-Information Conversion (AIC) as a replacement for conven- tional ADC technologies. The AICs simultaneously perform data acquisition and compression, seeking to directly sample signals for achieving specific tasks as opposed to acquiring a full signal only at the Nyquist rate to throw most of it away via compression. Our contention is that in order for CS to live up its name, both theory and practice must leverage concepts from learning. This work demonstrates our contention in hardware prototypes, with key trade-offs, for two different fields of application as edge and big-data computing. In the framework of edge-data computing, such as wearable and implantable ecosystems, the power budget is defined by the battery capacity, which generally limits the device performance and usability. This is more evident in very challenging field, such as medical monitoring, where high performance requirements are necessary for the device to process the information with high accuracy. Furthermore, in applications like implantable medical monitoring, the system performances have to merge the small area as well as the low-power requirements, in order to facilitate the implant bio-compatibility, avoiding the rejection from the human body. Based on our new mathematical foundations, we built different prototypes to get a neural signal acquisition chip that not only rigorously trades off its area, energy consumption, and the quality of its signal output, but also significantly outperforms the state-of-the-art in all aspects. In the framework of big-data and high-performance computation, s