关键词:
γ-AlON
缺陷效应
荧光效应
光催化
透明陶瓷
空间环境效应
摘要:
尖晶石结构氮氧化铝(γ-AlON)是一种新型的结构功能一体化材料,在国防和民需市场均展现了广泛的应用前景。γ-AlON本身为非化学计量化合物,其结构和性能具有显著的组分依赖性,含有丰富的本征缺陷。而这些本征缺陷对材料的服役性能起到了重要影响,研究这些本征缺陷的效应将对γ-AlON的实际应用奠定坚实的基础。特别是γ-AlON透明陶瓷有望成为新一代航天器光学窗口用材料,以满足恶劣、复杂深空服役环境的需求。目前γ-AlON材料的研究大多集中在块体材料制备技术创新、工艺条件优化,而对γ-AlON粉体材料的缺陷效应和块体透明陶瓷在未来深空环境应用中的环境效应还缺乏深入的研究与评估。本论文针对γ-AlON材料的结构特点,从缺陷层面上系统探讨了γ-AlON材料缺陷结构及其效应,为改善γ-AlON材料性能、拓展其应用领域提供理论依据和实践经验。具体研究内容如下:(1)采用高温固相法在1700℃、氮气气氛下合成了Cr3+掺杂的Cr3+:γ-AlON粉体。Cr3+:γ-AlON具有荧光性能,在670 nm、693 nm、720 nm和750 nm处均有发射峰存在。由于基体中存在缺陷,导致了670 nm处存在一组带有“蓝移”的R线。Cr3+的周围空位的存在,导致了720 nm的弱晶格场Cr3+发光和693 nm处强晶格场中的Cr3+发光。750 nm处较宽的发射峰是由氮代氧空位或者氮间隙等缺陷引起的基质发光,发光强度随Cr3+掺杂浓度的增加先增大后减小。(2)以NH4Cl作为烧结助剂,采用高温固相法成功合成了Bi3+:γ-AlON粉体,解决了Bi3+:γ-AlON粉体合成过程中Bi离子易升华的难题。当紫外光照射120 min后,2 mol%掺杂的Bi3+:γ-AlON对MO的降解效率最高,高达78%,比纯γ-AlON(仅25%)高了2.1倍,且降解过程的动力学特征符合一级动力学模型,反应速率可达0.0113 min-1。2 mol%掺杂Bi3+:γ-AlON光生载流子的分离效率的提高,增强了氧化还原能力,使得其光催化性能得以提升。(3)以亚微米AlN和纳米Al2O3为原料,以聚乙烯醇缩丁醛和柠檬酸为有机高聚物碳源兼分散剂,在Al2O3/AlN复合原料粉体表面吸附有机高聚物并经热解得到颗粒表面包覆有纳米碳层的Al2O3/AlN复合粉体,然后在高温氮气中经固相反应合成γ-AlON粉体材料。经过颗粒制备工艺优化,采用三元复合烧结助剂,制备了直径为50 mm,厚度为5 mm的大尺寸γ-AlON透明陶瓷,γ-AlON透明陶瓷在可见光波段透过率达到84.9%,为进一步大尺寸γ-AlON透明陶瓷制备奠定了基础。(4)对γ-AlON透明陶瓷样品开展了模拟空间环境效应实验,包括紫外辐照、高能电子辐照、γ射线辐照和原子氧侵蚀。γ-AlON透明陶瓷表现出具有抗高能电子辐照的性能;但γ射线辐照、紫外辐照和原子氧侵蚀都会导致透明陶瓷透过率下降。经结构分析和系列光谱学分析,阐明了影响γ-AlON晶体光学性能的主要本征缺陷是VAl′′′、ON·以及它们之间形成的缺陷簇。这些缺陷的存在状态显著影响了γ-AlON晶体材料的光学透过性。