关键词:
浸没式正渗透膜生物反应器
膜通量
浓差极化
盐度累积
膜污染
摘要:
正渗透膜生物反应器(OMBR),具有截留效率高、出水水质好和膜污染趋势低等技术优势,在废水回用和资源回收方面有着广阔的应用前景。然而,浓差极化、盐度累积和膜污染等问题导致OMBR通量下降迅速,限制了其实际应用。因此本文从不同运行方式和不同生物组合工艺的对比入手,对浸没式正渗透膜生物反应器膜通量的影响因素进行了研究,主要研究成果如下:FO膜清水过滤通量(JW)变化受汲取液浓度(DS)、膜朝向以及垫片的影响。膜通量随着DS浓度的增加而增加,同时DS浓度的增加也增加反向溶质扩散量(JS),利用JS/JW的比值综合考虑这两个方面,结果显示,DS浓度在1.5 mol·L-1时FO过滤性能最佳。相比活性层朝向原料液(FO模式),活性层朝向汲取液时(PRO模式)下初始水通量更高,但水通量下降的速率更快,是由于浓缩型的内部浓差极化现所导致的。垫片的添加能够减缓浓差极化,PRO和FO模式下的通量增加量分别为3.5%和12.8%。FO污水净化实验结果显示,FO膜能够实现对废水中TOC和营养物质的高效截留。此外,FO过程中的膜污染是轻微的和可逆的,通过物理清洗的方法就能有效地恢复通量。连续流运行下的OMBR中,膜的截留作用和反向溶质扩散导致反应器内盐浓度逐渐提升。受盐度累积的影响,OMBR中微生物的活性受到抑制,PO43--P和NH4+-N生物降解率逐渐下降。此外,盐度提高造成部分细胞凋亡,微生物的量逐渐减小。污泥粒径也逐渐减小,污泥破碎后释放更多的SMP,不仅增加了混合液的盐度还加深了膜污染,造成通量的快速下降。通过间歇排盐的调控运行后,通量下降相对缓慢,微生物的活性以及混合液中的分泌的SMP都恢复正常。R1(好氧絮体污泥-OMBR)和R2(好氧颗粒污泥-OMBR)在运行过程中,对TOC、PO43--P的平均去除效率分别都保持在95%以上,而R2中的好氧颗粒污泥能够实现NH4+-N高效降解,平均去除率达到了77%,明显高于R1的57%。R2通量下降速率明显小于R1,至运行结束,R2与R1的差值为1.0 L·m-2·h-1。整个运行过程中,R2中可溶性微生物产物(SMP)的含量总体低于R1,造成R1污染层中多糖和蛋白的含量更多,污染层的出现会造成膜的传质效率的下降,强化外部浓差极化现象,导致膜通量的下降更快。菌群分析结果显示,相比混合液,膜面的微生物多样性更低,膜面处富集的微生物主要是耐盐性更好的变形菌门和厚壁菌门。