关键词:
Biofilm carrier
Suspension polymerization
Fluidized bed bioreactor
Synthetic wastewater treatment
摘要:
Biofilm process is a promising wastewater treatment technology and biofilm carrier (biocarrier) is regarded as the core of this process. However, the traditional commercial biocarriers have their inherent drawbacks, therefore, the development of new-type biocarrier to enhance wastewater treatment efficiency is significantly important to biofilm-based reactors. In this study, based on radical suspension polymerization, a novel kind of magnetic porous carriers (PMCs) was prepared by modifying the porous polymer carriers (PPCs) with inorganic particles, and then applied in a fluidized bed bioreactor (FBBR) with a low packing ratio of 10 % (v/v) to synthetic wastewater treatment. The results showed that this novel biocarrier possesses paramagnetism with saturation magnetization of 1.01emu/g, low density (1.26 g/cm(3)), excellent hydrophilicity (surface water contact angle approaching zero) and rough surface. Besides, compared with the PPCs, the developed PMCs have larger pores (up to 50 mu m or more), in which the larger-sized microbes are able to colonize. Moreover, as compared to the PPCs-based FBBR, the PMCs-based reactor achieved shorter time (7 days) for biofilm formaiton and significantly enhanced NH3-N removal efficiency ( nearly 20 % increase at the level of influent NH3-N concentration about 100 mg/L). High-throughput sequencing (HTS) results indicated that this new biocarrier could promote biodiversity and improve the abundance of Nitrosomonadales (the functional bacteria for ammonia removal in the bio-system), thus enhancing the ammonification process. Therefore, the developed PMCs could be preferable biocarriers for biofilm formation and provide an alternative to the traditional suspended biocarrier, demonstrating a promising potential, even at a lower filling ratio, to enhance the pollutants removal performance.