关键词:
智能干扰
干扰效能评估
混合性策略
改进策略爬山算法
摘要:
智能干扰是一种利用环境反馈自主学习干扰策略,对敌方通信链路进行有效干扰的技术。然而,现有的智能干扰研究大多假设干扰机能够直接获取通信质量反馈(如误码率或丢包率),这在实际对抗环境中难以实现,限制了智能干扰的应用范围。为了解决这一问题,该文将通信干扰问题建模为马尔科夫决策过程(MDP),综合考虑干扰基本原则和通信目标行为变化制定干扰效能衡量指标,提出了一种改进的策略爬山算法(IPHC)。该算法按照“观察(Observe)-调整(Orient)-决策(Decide)-行动(Act)”的OODA闭环,实时观察通信目标变化,灵活调整干扰策略,运用混合策略决策,实施通信干扰。仿真结果表明,在通信目标采用确定性规避策略时,所提算法能够较快收敛到最优干扰策略,并且其收敛耗时较Q-learning算法至少缩短2/3;当通信目标变换策略时,能够自适应学习,重新调整到最优干扰策略。在通信目标采用混合性规避策略时,所提算法也能够快速收敛,取得较优的干扰效果。