关键词:
风电功率预测
TCN
模态分解
BiLSTM
组合模型
摘要:
风电功率的准确预测对于能源系统的稳定运行和电力调度方面具有重要作用。由于风电功率序列具有随机性,间歇性和非线性的特点,使用传统预测以及单一预测模型往往会存在预测精度较低的问题,且容易受到噪声干扰。为了提升风电功率预测的准确性,本文提出了一种CEEMDAN分解技术与神经网络模型相结合的方法。首先将风电功率序列用CEEMDAN方法分解为若干数量的本征模态分量,通过样本熵值来计算每个模态分量的复杂度,根据样本熵值大小将不同的模态分量重组为重构的子序列。将中高频序列数据使用BiLSTM模型来进行预测,而中低频序列数据则采用TCN模型来预测。最后,将不同模型的预测值叠加得到最终的预测值。通过仿真实验,结果表明本文模型在评价指标RMSE、MAE、SMAPE取值均最低,R方值最高,这几个指标的取值均值分别为91.4132 MW、53.5173 MW、22.2638 MW、0.9807,均优于对比模型,说明本文模型具有较高的预测精度。