关键词:
光伏功率预测
长短期记忆(LSTM)网络
增量学习
弹性权重整合(EWC)算法
摘要:
针对目前大部分光伏功率预测模型采用批量离线训练方式,且新建光伏电站训练数据较少的问题,本文提出一种基于增量学习的卷积神经网络(CNN)和长短期记忆(LSTM)网络结合的光伏功率预测模型。首先,采用CNN对气象数据进行特征提取,并通过LSTM网络进行功率预测,以此CNN-LSTM混合模型进行背景学习,训练出可用于增量学习的基准模型。其次,根据不同的时间跨度进行增量学习训练,实现模型的在线更新。针对增量学习中的灾难性遗忘问题,采用弹性权重整合(EWC)算法和在线弹性整合(Online_EWC)算法进行缓解。实验结果表明,相较于无约束的增量学习,采用EWC和Online_EWC方法的增量学习可以明显缓解灾难性遗忘问题,降低预测平均绝对误差(MAE)和均方根误差(RMSE);同时,在保证预测精度的前提下,增量学习的耗时大幅低于传统的批量学习。