关键词:
Aggregate
Deep ploughing with straw incorporation
Particulate organic matter
Pore
Shajiang black soil
XCT scanning
摘要:
【Objective】 Protection of particulate organic matter (POM)within soil aggregates has been recognized to be one of the principal mechanisms of C sequestration in soil. The low soil organic carbon (SOC) content of Shajiang black soil is a major factor for limiting crop yields in the Huaibei plain. Increasing SOC sequestration by returning crop residues to the field has been recommended. No-tillage (NT), rotary tillage (RT), and deep tillage (DT) with straw return (S) are commonly implemented. The objective of this study was to evaluate the spatial distribution of POM within aggregates in Shajiang black soil under various straw return practices. 【Method】The six-year field experiment was conducted using X-ray CT technology and machine learning. The soil aggregates (6-8 mm in diameter) were collected from depths of 0-10, 10-20, and 20-40 cm. POM is divided into two parts: fresh residue and old POM, based on its morphological characteristics. 【Results】Overall, the POM within aggregates was primarily composed of fresh residues, comprising 76.4% to 87.0% across various soil layers under three different straw return practices. The distribution ratio of fresh residues in connected pores ranged from 0.266 to 0.788, while the distribution ratio of old POM varied between 0.177 and 0.569. There was a substantial quantity of POM was distributed within aggregates under NTS treatment in the 0-10 cm soil layer. Fresh residues and old POM were primarily distributed in the connected pores, with the proportions of 0.788 and 0.569, respectively. In the 20-40 cm soil layer, POM volume density within aggregates was highest under DPS treatment among all the treatments. Specifically, the proportions of fresh residue and aged POM distributed in the connected pores were 0.729 and 0.536, respectively. In comparison to the RTS treatment, the NTS led to a significant change in both the total POM volume density and fresh residue volume density by 54.4% and 56.7% within the 0-10 cm soil layer (P <