关键词:
注意力机制
特征融合
卷积神经网络
傅里叶变换
旋转机械
摘要:
旋转机制在生产生活中的应用愈加广泛;但旋转机械存在应用环境较为复杂,生产环境恶劣,各部件相互影响,单一信号无法完整表现故障特征等问题;针对此问题,研究根据注意力机制构建卷积神经网络,在网络结构中引入自注意力模块,采用多信号源进行数据提取,将不同信号特征互补融合并构建旋转机械故障检测模型,同时使用傅里叶变化进行数据优化;实验结果表明,构建模型的故障分类准确率为99.92%,比第二优的算法高出1.89%,故障检测精度达到了99.64%,数据进行傅里叶变换后的检测精度平均提升了17.32%;由此可得,构建的故障检测模型能够有效提取并融合不同数据采集的故障特征,大幅提升旋转机械的故障检测精度,且将数据特征融合模块加入模型中能够有效减少单独计算的运行成本,提高运算速度,减少因机械故障产生的生产安全事故。