关键词:
黄精属物种
傅里叶变换中红外光谱
不同维度光谱图像
机器学习算法
残差神经网络
摘要:
将不同维度光谱图像的概念首次应用于物种鉴别,建立了快速准确的黄精属鉴别方法。采集6种黄精属共计563批样品,基于傅里叶变换中红外光谱(FT-MIR)的一阶导数(1st)、二阶导数(2nd)、乘法散射校正(MSC)、标准正态变量变换(SNV)和Savitzky-Golay(SG)5种预处理方法,构建了决策树(DT)、随机森林(RF)和支持向量机(SVM)3种机器学习算法。同时构建了深度学习残差神经网络(ResNet)模型,绘制了不同维度的光谱图像,包括一维MIR,同步、异步和综合二维相关光谱、三维相关光谱、三维相关光谱投影图像的10个数据集,并将其与ResNet模型相结合进行分类。结果表明,不同预处理方法对模型结果的影响不同,MSC预处理方法可显著提高DT、RF和SVM 3种算法的准确率。基于同步二维相关光谱数据集的ResNet算法建模效果最好,准确率达到100%,损失值较小,不需要复杂的预处理,时间成本低,可以准确鉴别黄精属物种,为食品、中草药等其他领域的鉴别提供了参考。