关键词:
数据驱动
多智能体深度强化学习
双时间尺度
电压控制
功率优化
摘要:
风电、光伏(photovoltaics,PV)在新型电力系统中的渗透率日益增加,使得配电网电压波动加剧,而储能(energy storage,ES)、电动汽车(electric vehicles,EV)对降低配电网电压波动有重要作用。与此同时,智能电表、智能传感器以及改进的通信网络广泛部署,可获取的数据量越来越大,数据驱动技术兴起。提出了一种基于多智能体深度强化学习(multi-agent deep reinforcement learning,MADRL)的配电网双时间尺度有功-无功功率协调的电压控制策略。慢时间尺度下用双深度Q网络算法(double deep Q-network algorithm,DDQN)求解电容器组(capacitor banks,CBs)、有载调压变压器(on-line tap changer,OLTC)与ES有功-无功功率优化问题。快时间尺度下用具有注意力机制的经验增强多智能体柔性参与者-评论家算法(experience augmentation-multi-agent soft actor critic,EA-MASAC)调节PV、风机(wind turbine,WT)、静止无功补偿装置(static var compensator,SVC)的无功功率与EV的有功功率。最后,在IEEE-33节点系统上验证了所提方法的有效性。