关键词:
低秩图像修复
张量主成分分析
张量奇异值分解
矩阵核范数
张量截断核范数
摘要:
针对张量数据存在不完整和缺少项,导致图像修复过程中信息丢失的问题,提出了一种基于截断核范数和低秩张量核矩阵的图像修复算法TNN-LTKM(truncated nuclear norm low-rank tensor kernel matrix)。首先,引入张量截断核范数,对秩函数进行精确逼近,以增强优化模型的鲁棒性;其次,通过增加核心矩阵核范数扩展t-SVD中的张量核范数,定义了一个新的包含张量管秩和核矩阵秩的潜在核范数,来充分提取核张量中的低秩结构,消除冗余;接下来,采用增广拉格朗日法和交替方向乘子法对上述模型进行优化求解;最后,在ZJU、Berkeley和Kodak Lossless 3个数据集上进行实验验证,取相对平方误差、峰值信噪比、结构相似度和CPU运行时间4个评价指标,与现有的6种算法对比表明,TNN-LTKM算法在低采样率下有着良好的表现。