关键词:
智慧交通
张量计算
数据融合
小样本学习
元学习
摘要:
针对智慧交通场景中样本较少且难以获取的问题,提出一种张量计算与小样本学习相结合的综合模型,从而应对目标域样本不足导致训练效果差的情况。构建基于张量计算的多维计算模型,处理智慧交通场景中的多维异构数据,基于数据的时空相关性获得融合数据张量,将融合数据作为输入数据,经由小样本学习模型进行训练,最终根据消融实验结果比较分析基于不同张量计算方案和小样本学习方法的张量小样本学习模型性能。仿真结果表明,相较于2种基于度量的小样本学习模型:原型网络和匹配网络,基于元学习的小样本学习模型和张量计算模型相结合后的可信度更高,并且基于不同的张量融合方案,元学习模型的准确率和F1值得到了不同程度的提升,其中基于逆分解张量融合方案的模型准确率可达0.95,性能优于平行因子分解(CPD)融合方案。