关键词:
传感器
双重Fano共振
变周期亚波长光栅
导模共振
周期性光子晶体多层膜
摘要:
现在众多传感结构模型只能对单变量待测样本折射率进行传感检测,为实现不同待测样本的高通量检测并降低环境因素的干扰,提出了一种基于波长调制的变周期亚波长介质光栅多层膜复合结构。以双周期为例进行分析,变周期光栅层由两个具有不同光栅周期的介质光栅A和B组成,通过有限元法对传输特性进行分析,TE偏振入射光以垂直于光栅层表面的方式入射至介质光栅表面,当在介质光栅区域A和B内分别满足相位匹配条件时,变周期亚波长介质光栅会形成GMR,提供两个具有单一窄带的双离散态共振缺陷峰;由于类F-P腔中含有周期性光子晶体,光波传播到光子晶体会产生光子禁带,提供一个较宽频带的连续态。在满足相位匹配条件时,变周期亚波长波导结构中形成的双离散态共振缺陷峰与周期性光子晶体多层介质薄膜构成的类F-P腔中形成的连续态发生耦合,实现双重Fano共振。然后通过探究波导层厚度dw和光子晶体周期数N对传感特性的影响,选择dw=97 nm和N=3,使其达到FOM值最大。最终因变周期介质光栅层是由两种具有不同介质折射率的材料构成,在介质光栅区域A和B的光栅凹槽部分可设置两个传感检测单元,建立基于波长调制的双重Fano共振全电介质传感模型,设置不同的传感检测区域,发现双重Fano光谱曲线在不同传感检测区域内都能随着ns1和ns2变化,间接实现了对待测样本折射率的动态检测,因而可在同一传感结构模型中实现对不同待测样本折射率区间的多变量检测。结果表明,在传感检测单元A内,FR1和FR2的FOM值分别为631.53和463.7 RIU^(-1);在传感检测单元B内,FOM值分别为480.67和834.04 RIU^(-1)。所设计的传感结构模型通过结构参数优化,实现了传感结构的高反射率、高FOM值和较宽的检测范围,对双重Fano共振提供了理论参考,对待测样本折射率的多变量检测具有一定的研究价值。